If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+5X=144
We move all terms to the left:
X^2+5X-(144)=0
a = 1; b = 5; c = -144;
Δ = b2-4ac
Δ = 52-4·1·(-144)
Δ = 601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{601}}{2*1}=\frac{-5-\sqrt{601}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{601}}{2*1}=\frac{-5+\sqrt{601}}{2} $
| X^4+36-20x^2=0 | | 4a+16=20a-16 | | y+(-65)=79 | | (c+3)-2c-(1-3c)=12 | | 2(x+1)+3x=3x+12 | | 100-2p=p | | 3x(5)-0.5=1.9 | | 2(x+5)-3(2x-5)=17 | | 6y-2=7y-1 | | X+5/5=6/x-2 | | 3.5+1.2(6.3–7x)=9.38 | | t4– -12= 14t4– -12= 14t4– -12= 14t4– -12= 14t4– -12= 14t4– -12= 14 | | 14000P(1+2r)=12000P(1+4r) | | x4+36-20x2=0 | | 5-2t=2t | | y+8/y-3/2=0 | | 4x+(x-1)(x+2)=x²+3 | | 3x-5(x-2)=-9+3x+4 | | 2x^2-10×=48 | | 110+.7x=40+.9x | | 6z=31 | | 12-4k=6k-28 | | 56=7(b)^3 | | -3x^2+18x+9=0 | | -10x-10x=40 | | -54+2x-47=-21 | | Y=2(-1/3)x+4 | | 5(x+10=20 | | s+21/2s+10=31 | | 4z/10-2=1 | | -54+2x-47=21 | | 2y^2-32y+1=0 |